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1. INTRODUCTION.
The classical transportation problem can be formulated as follows. Let
{S,, n = 1,2,...,N} denote N sources, let {R,, m = 1,2,..., M} denote
M sinks, let a, denote the amount of goods that is available at source Sy,
let b,, denote the amount of goods required at the sink R,,, and let ¢(n,m)
denote the cost to send one unit of goods from the source S, to the sink
R,,. We call a, the storage at source S,, and b,, the demand at sink R,,.
Assume that Z{V anp = Z{” b, and let A denote the set of N x M matrices
{y(n,m), n = 1,2,..,N, m = 1,2,..., M}, such that Zf‘nl:l y(n,m) = an,
N y(n,m)=by, and y(n,m) >0, n=1,2,..,N, m=1,2,.., M. We call
a matrix in A a transportation plan. Problem: Find a transportation plan

X = {z(n,m)} € A such that

3> z(n,m)e(n,m) = min{»_ Y y(n,m)e(n,m), {y(n,m)} € A}.

This problem, the (balanced) transportation problem, is a basic example
within the theory of optimization theory, and in standard text books one
usually presents two solution methods to the problem, namely the simplex
method and the primal-dual algorithm. The simplex method was developed
by G. Danzig in the late 1940s. An early presentation of the primal-dual
algorithm for the special version of the transportation problem called the
assignment problem, which occurs if N = M and a, =1, forn =1,2,..., N
and b, = 1, for m = 1,2,..., M, was given by H. Kuhn in [?|. In this
paper Kuhn writes ”One interesting aspect of the algorithm is the fact that
it is latent in work of D. Kénig and E. Egervary that predates the birth of
linear programming by more than 15 years (hence the name, the ‘ Hungarian
algorithm’)”.

In this paper we shall consider the sources and the sinks as points in

the plane and write {S, = (in,Jjn),n = 1,2,..,N} for the sources and
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{Rm = (Tm,Ym),m = 1,2,..., M} for the sinks. We shall also assume that
the cost-function is a distance-function 6((¢, j), (z,y)) between points in the
plane. We call this special version of the transportation problem for the
transportation problem in the plane. (From now on we write 4(i, 7, z,y) in-
stead of d((¢, j), (x,y)) for a distance-function between points in the plane.)

The transportation problem has a long history, and goes as far back as
to Monge, 1781 [8].

In a paper from 1942 L. Kantorovich proves that the solution of the
transportation problem, can be obtained by solving a maximization prob-
lem instead of a minimization problem - the so called dual version of the
transportation problem. (See [6].) He also showed that the solution to the
transportation problem can be used as a distance-measure between proba-
bilities.

There is much literature on the transportation problem. Here we only
mention the paper [10] and the book [11] by Rachev in both of which there
are many further references.

In the 1980s the solution to the transportation problem in the plane
was introduced as a distance-measure for digital, grey-valued images with
equal total grey-value. See [12]| and [13]. We call this distance-measure the
Kantorovich distance for images.

A drawback with the Kantorovich distance for images, is that in case we
deal with ordinary grey-valued images the size of the transportation problem-
becomes quite large which implies that the computation time becomes long.

Standard algorithms for finding the solution to the transportation prob-
lem - namely the simplex method and the primal dual algorithm, both have a
computational complexity of order O(N?) in case the data is integer valued,

a fact which was pointed out already by Werman et al. in [12].



In 1995, Atkinson and Vaidya [2] presented an algorithm for the trans-
portation problem in the plane, which, for integer valued problems, has a
computational complexity of order O(N?xlog(N)xlog(C)), where C denotes
the maximum of the storages and the demands, in case the distance-function
is the L! — metric, and of order O(N?® x (log(N))? x log(C)) in case the
distance-function is the Euclidean metric. However, they did not apply their
algorithm to digital images, nor did they actually present any experimental
results, so it is difficult to make comparisons with other methods.

In a recent paper [5] from 1998 (see also [4]), we described an algorithm for
computing the Kantorovich distance for images, in case the distance-function
between points in the plane is chosen to be the L' — metric or the square of
the Euclidean metric; the algorithm was based on the primal-dual algorithm
for the balanced transportation problem, and practical experiments indicatet
a computational complexity of order approximately O(N?) for square images
with NV pixels.

The reason we managed to obtain an algorithm, which in comparison with
the standard primal-dual algorithm for the balanced transportation problem,
has a lower computational complexity, was because we found a method by
which we could reduce the search for the so called admissible arcs.

However, it was only in the case when the distance-function is the L' —
metric we were able to prove that our algorithm computed the Kantorovich

distance exactly. In case the distance-function 6(zy, y1, z2, y2) is defined by

8(z1, Y1, T2, ¥2) = (71— 22)* + (11 — 2)° (1)
we were only able to show that our computation leads to the correct result by
checking an optimality criterion which exists for the primal-dual algorithm.
(As we shall motivate in Section 6 below, there are several reasons why it is

of interest to use a distance-function defined by (1).)
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The purpose of this paper is threefold. One purpose of this paper is to
prove that the stopping criterion introduced in [5] does indeed lead to the
correct result in case the distance-function is defined by (1).

A second purpose is to prove some results by which one can improve
the algorithm for computing the Kantorovich distance for images in case the
distance-function again is defined by (1). These results imply that we can
restrict the search for admissible arcs even further.

One case we did not consider in the paper [5] was the case when the
distance-function is exactly the Euclidean distance. (We mentioned very
briefly, [5] Section 20, that in case one uses a linear combination, of the
L*® — metric and the L' — metric then the algorithm we described in [5] did
work for the examples we had considered.)

The third purpose of this paper is to prove a result by which it is pos-
sible to improve the primal-dual algorithm for computing the Kantorovich
distance also in case the distance-function is the Euclidean distance. We be-
lieve, that by using this result, it should be possible to obtain an algorithm
for the transportation problem in the plane with Euclidean distance-function,
which, for integer valued problems, has a computational complexity of ap-
proximately order O(NN?) to be compared to O(N?%?) obtained approximately
in [2].

The plan of the paper is as follows. In Section 2 we introduce some basic
notations, some terminology and a more precise formulation of the trans-
portation problem in the plane. In Section 3 we present the dual formulation
of the transportation problem and in Section 4 we give a very brief descrip-
tion of the primal-dual algorithm. In Section 5 we recall some results proven
in [5]. In Section 6 we prove the assertion which we presented in [5] in case

the distance-function is defined by (1), and in Section 7 we prove some other



results which can be used to decrease the search for admissible arcs when the
distance-function is defined by (1). In Section 8 we prepare for our results,
when the distance-function is the Euclidean distance, by introducing three
notions namely a hyperbolic set, a level set and an ezclusion set, and we prove
a simple but very important relation between hyperbolic sets and level sets.
In Section 9, we prove a simple, elementary, lemma which relates hyperbolas
and cones, and then in Section 10, we apply this result when proving results,
by which one can reduce the search for admissible arcs in case the distance-
function is the ordinary Euclidean distance. In Section 11, for the sake of
completeness, we prove that one of the basic assumptions we make in most
of our results is correct, namely that if one uses the primal-dual algorithm
with proper initialization then each pixel will always belong to at least one
admissible arc. In section 12 we present a result by which one can speed up
the computation of the quantities by which one changes the dual variables
when performing the primal-dual algorithm.

In order for the results of this paper to be useful it is necessary that the
sources and the sinks can be organized in such a way that one quickly can
determine all points which are so to speak northeast (northwest, southeast,
southwest) of an arbitrary point. In section 13 we briefly describe an algo-
rithm by which one can accomplish this. Section 14, finally, contains a short

summary.

2. BASIC NOTATIONS AND TERMINOLOGY.

Let K = {(in,Jn), n =1,2,..., N} be aset of N points in R?. By an image P
with support K (defined on K) we simply mean aset P = {(in, jn, P(in, Jn)), 7 =
1,2,..., N} for which p(in, ja) > 0, n =1,2,..., N. We usually use the nota-
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tion P = {p(i,j) : (¢,j) € K} for an image. We call an element (4, j) of the
support K of an image a pizel.

Next, let P = {p(i,j) : (i,j) € K1} and Q = {q(z,v) : (z,y) € K2}
be two given images, defined on the two sets K1 = {(in,jn), n=1,2,..., N}
and K3 = {(Zm,ym), m = 1,2,..., M} respectively. K; and K, may be the

same, overlap or be disjoint. We also assume that

;p(i,j) =3 q(z,y).

Let ['(P,Q) denote the set of all non-negative mappings h(i, j,z,y) from
K, x Ky — R* such that

2_:1 h(i(n), j(n), 2(m),y(m)) < p(i(n),j(n)), n=1,2,.,.N  (2)

and
Z h(i(n), j(n), z(m), y(m)) < g(z(m),y(m)), m=1,2,. .M.  (3)

We call any function in I'(P, Q) a transportation plan from P to Q. A trans-
portation plan for which we have equality in both (2) and (3) will be called
a complete transportation plan and we denote the set of all complete trans-
portation plans by A(P, Q).

Let 6(¢, j, z, y) be a distance-function measuring the distance from a pixel
(¢,7) in K, to a pixel (z,y) in K,. The Kantorovich distance dg ;(P, Q) with
underlying distance-function (7, j,z, y) is defined by

dxs(P,Q) = min{ 3 h(i,j,z,y) x 8(i,4,2,8) - h(--,-,") € A(P,Q)}.
g2y
From the definition and some consideration we see that computing the Kan-
torovich distance for images is equivalent to solving a linear programming

problem called the balanced transportation problem. Most standard text
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books in optimization theory presents an algorithm for solving the general
balanced transportation problem with arbitrary cost-function. See e.g. [1],

3] or [9].

3. THE DUAL FORMULATION.
It is well-known that the solution to the minimization problem described
above is also obtained by solving the following maximization problem - the
dual problem:
mazimize Y, o, j) x p(i,j) + > B(z,y) x q(z,y)
(1.3)e K1 (z,y)€K>2

when

8(i.j.z,y) —a(i,j) - Blz,y) 20, (i,j) € K1, (z,y) € Koo (4)

The variables a(i,j) and 3(z,y) are called the dual variables and in case
they satisfy (4) we have a dual feasible solution. A pair {(7,j), (z,y)} where

(i,j) € K, and (z,y) € K, is called an arc. In case
a(i, j) + Bz, y) = 8(1,5.2,y) (5)

we say that {(i,7), (z,y)} is an admissible arc. Otherwise the arc is called
unadmissible.

If a pixel (i,j) € K, is such that there exists a pixel (z,y) € K> such
that (5) holds then we say that (7,j) has an admissible arc and vice versa.
If {(i,4). (x,y)} is an admissible arc we also say that (z,y) is an admissible

pizel with respect to (4, j). And vice versa.
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4. THE PRIMAL-DUAL ALGORITHM.
The primal-dual algorithm runs roughly as follows. Let {af(t,7), B(z,¥) :
(i,7) € Ki, (z,y) € Ks} be a feasible set of dual variables, and let us
also assume that initially there exists at least one admissible arc for every
pixel in K and K,. (If this is not the case originally, it is easy to see that
one can increase some or all of the dual variables so that this hypothesis
is fulfilled). We now look for a transportation plan h(7, j, z,y) from P to
Q which has the largest total mass among all the transportation plans for
which h(i,j,z,y) = 0 in case {(¢,7),(z,y)} is unadmissible. In case the
transportation plan we find is complete then we are ready; otherwise we
update our set of dual variables. To find the "best” transportation plan
on a given set of admissible arcs we use a labeling process, and we use the
labeling also in order to find the quantity used when updating the set of dual
variables. Once we have updated the variables, we determine the new set of
admissible arcs and then we again look for the "best” transportation plan on
this new set of admissible arcs. Etcetera.

A good reference on the primal-dual algorithm for the transportation

problem is Murty [9], chapter 12. Other useful references are [3] and [1].

5. SOME PRELIMINARY RESULTS.

In [5] we were able to improve the primal-dual algorithm for computing
the Kantorovich distance for images. The reason for the improvement was
that we were able to reduce the search for new admissible arcs, by using
the structure of the underlying distance-functions. In this section we shall
present some results and proofs which in essence can be found in [5].

The following proposition holds for any choice of underlying distance-

12



function.

Proposition 1 Let the underlying distance-function (i, j, z,y) be arbitrary.

Let (i1, j1) and (32, jo) belong to K, let (x1,%1) and (x4, y2) belong to Ky and

suppose that {(i2, J2), (2, y2)} ts an admissible arc. Then

a(ilyjl) - a(i27j2) S 6(i17j17$27 y2) - 6(i27j271:27y2) (6)

and similarly

B(zy, 1) — B(x2,y2) < 8(ia, j2, T1,11) — 822, Jo, T2, Ya). (7)

Proof. Let us prove (7). We have

B(x1, 1) = Blxz,42) =

B(x1, y1) — 8(ia, Jo. T2, Y2) + aliz, j2) <
8(ia, J2, 1, 11) — alla, J2) — 022, 2, T2, Yo2) + aliz, j2) =
8(iz, j2, 1, Y1) — 0(32, J2, T2, Y2).

The proof of (6) can be done in an analogous way. QED.
By applying the triangie inequality the following proposition follows im-

mediately from Proposition 1. We therefore state it without proof.

Proposition 2 Let the underlying distance-function é(i, j, z,y) be a metric.

Then, if both (i1, 1) € K1 and (i, j2) € K, have admissible arcs then
la(i, j1) — aliz, ja)| < 6(i1, J1, 42, J2). (8)

and similarly, if both (z1,y1) € Ko and (x2,y2) € Ks, have admissible arcs
then

1B(z1, 11) — B(z2, y2)| < 6(x1, 10, T2, y2)- (9)

13



Before we state and prove the next lemma let us introduce some further
terminology.

Let (¢,7) be a pixel in the support K, of the image P and let a(i,7) be
a dual variable corresponding to the pixel (i,). Let (z,y) be a pixel in the

support of the image Q. If the dual variable 3(z, y) is such that

ﬁ(l‘, y) < J(imjaxvy) - a(lv])

then we say that (z,y) is low with respect to (i, 7). In case there is little risk
for misunderstanding we only say that (z,y) is low.

Let us also introduce the following notation and terminology regarding
the positions of two pixels. Thus let (z1,1) and (z2,y2) be two pixels. If
z, < 5 and y; < y, then we say that (z9,ys) is northeast (NE) of (z1,y1),
and that (z;,y1) is southwest (SW) of (z2,y2), and if £; > 72 and yy < ¥
then we say that (z2,ys) is northwest (NW) of (1, 1), and that (zy,3) is
southeast (SE) of (z2, y2).

The usefulness of our next result is that it helps to limit the number of
tests needed for finding all new admissible arcs in case we use the [;-metric as
underlying distance-function. The result can be found in [5], (Lemma 19.1)

but we repeat it here as background information.
Theorem 1 Suppose that the distance-function we are using is defined by

Let (i,7) be a pizel in K, which has an admissible arc. Now suppose that
(z1,11) € Ka, that (z1,y1) has an admissible arc , that (xy,y1) is NE of (4, j)
and that (z1,y1) is low with respect to (i,7). Then, if (z,y) is NE of (z1,y1),

then (z,y) is also low with respect to (i,j). (See Figure 1 below.)

14



Figure 1

low domain

admissible low
(‘r()ayl) (xlayl)
/ unadmissible

(2,7)

Proof. We prove the theorem by contradiction. Thus suppose that there
exists a pixel (z,y) € K, located NE of (z1,y:) and such that at that pixel
the dual variable 3(z,y) is such that

~8(i,j,z,y) + ali,j) + B(z,y) = 0. (10)
But since (z1, 1) is low with respect to (7, j), it follows that
a(i, ) < 8(i, j,z1, ) — Bz, 1)
which together with (10) implies that
8(z,5,z,9) — Bz, y) < (1, j, 21, 31) — Bz, 1)
and hence

6(I7 y) - ﬁ(xlvyl) > 6(2’]7]:71/) - 5(i7jvmlv yl)
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But since (z,y) is NE of (z1,y:) which is NE of (4, j) it follows that
6(i,5,z,y) = 8(i, jya, ) =z —i+y—j— (T —i+y —j) =

r—n +y —nh= 5(-7;73/,11,3/1)‘

Hence

B(z,y) — Bz, 11) > 8(z,y, 21, ).

But since both (z,y) and (z, y,) have admissible arcs this inequality can not

be fulfilled because of Proposition 2. QED.

6. FINDING ADMISSIBLE ARCS WHEN THE DISTANCE-
FUNCTION IS THE SQUARE OF THE EUCLIDEAN DISTANCE.
In [5] we also considered the case when the underlying distance-function is
defined as the square of the Euclidean distance. In our computer experiments
we first tried to apply the assertion of Theorem 1 in order to reduce the search
for new admissible arcs, but it turned out, that if we did so, then, for some
examples, we did in fact exclude too many arcs. Therefore we created an-
other claim with slightly stronger assumptions, a claim which we formulated
as an Assertion, ([5] Assertion 20.1). It turned out that by using this As-
sertion in order to reduce the search for admissible arcs, we did not exclude
any admissible arcs from our search. However we were at that time not able
to prove the claim, but now we have a proof and can therefore formulate our
claim as a theorem. We shall first introduce yet some further terminology.

Consider two pixels (zy,%1) and (2, y2) in K. Suppose both (z,,y;) and
(z2,y2) are low with respect to the pixel (z,7) € K. If also

8(2, 5, T2, y2) — (4, 5) — B2, 42) >

16



5(i,j’11’y1)—a(i7j) —5@1’91) (11)
then we say that (zo,ys) is lower than (x1,y:1). If we have strict inequality

in (11) we say that (2, y2) is strictly lower than (z,,v1).
Theorem 2 Suppose that the underlying distance-function is defined by
S(ijzy)=G—2+ G-y (12)

Let {a(i,5), B(z,y)} be a feasible set of dual variables such that each pizel
(i,5) in Ky, and each pizel (z,y) n K, have an admissible arc. Let (g, jo)
be a pirel in Ky and let (z1,y1), (z2,%1) and (z3,41) be three puzels in Ky
on the same line y = y1, such that ip < ¥, < T3 < 3. Furthermore assume
that both (z1,%) and (z2,y1) are low with respect to (io, jo) and let (Z2,71)
be lower than (x1, 1)

Then, (x3,v1) is also low with respect to (ig, jo). (See Figure 2 below, for

a graphical ilustration.)

low lower low
($17y1) ($2:y1) (:I::}’yl)

(i0, Jo)
Figure 2.

Remark 1. This theorem is slightly sharper than what we formulate in

Assertion 20.1 of [5] ( see also [4], Condition 18.1), since we only require that
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(z2, 1) shall be lower than (z;,¥) and not necessarily strictly lower.
Remark 2. This theorem requires that our images have supports on a
regular grid structure where it is meaningful to speak of pixels being located
on the same line. The theorem is not particularly useful for the case when the
elements of the supports of the two images under consideration are placed at
random.

Remark 3. It ought to be clear that by using this theorem one can decrease
the number of searches necessary to find all admissible arcs. On each line
y = y; we do not have to check pixels "further away”, once we have found
two pixels (x1,y1), (z2,y1) such that both are low and (3, y;) is lower than
(z1,91)-

Remark 4. In Section 7 we shall show how one can obtain an efficient
"stopping criterion” also in the ”y-direction”.

Remark 5. There are several reasons for defining the underlying distance-
function by (12). It is rotationally invariant, it takes integers into integers,
it also gives rise to a metric (if one takes the square root afterwards, see
e.g. [10}), and if the two images are pure translations of each other then in
the general case there is a unique transportation plan which gives rise to the
optimum value. Moreover, by comparison with the L! — metric it seems to

give rise to a distance which is less course.

Before we begin our proof of Theorem 2 we shall prove the following

auxiliary result.

Proposition 3 a) Let (i1, j1) and (i, j2) be two pizels in Ky, let (z1,y1)
and (22,y1) be two pizels in K, on the same line and such that r, < z,. Let

0(-,-,-,-) be defined by (12) and suppose that {(i1, j1), (z1, y1)} and {(i2, j2), (z2, 11)}

18



are admissible arcs. Then iy < is.

b) If furthermore {(is, j2), (z1,¥1)} s not an admissible arc then 1, < 1,.

(For a graphical illustration, see Figure 3 below.)

Figure 3
(iQ’ ]2)
admissible
- (z1, ) (2, 11)
admaissible
T < Ty =1 < 1o
(i17j1)

Proof of Proposition 3. We first prove part a). The following relations

must hold:

a(in, j1) + Bz, y1) = 0(in, j1, 71, 1)

a(iz, j2) + Blz2, y1) = 8(i2, j2, T2, 1)

a(iy, 1) + B(z2, 1) < 01, J1. T2, 11)

a(iz, j2) + B(z1, y1) < 8(32, j2, 21, 11 ) (13)
By first adding the last two inequalities and then subtracting the first two
equalities, and finally shifting terms we obtain the inequality

6(i, J1, T2, 41) — (21, J1, @1, 1) 2 6(32, J2, T2, 1) — O(42, o, T1,1n). (14)

By using the definition of 4(i, 5, z,y) (see (12)), we find that the left hand
side of (14) becomes equal to

2

(.1'2 - 1.1)2 - (.Tl - 21) = .'L'g — .'L'% - 2((82 — 1'1)7:1
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and the right hand side becomes equal to
(2o —ig)? — (z) ~ i2)? = 25 — 2} — 2(z2 — 71)i2.

Hence in order for (14) to be true it is necessary that 23 > ¢;. Thereby part
a) is proved.

If furthermore we know that {(z2,j2), (1, %1)} is not an admissible arc,
then we have strict inequality in (13), which implies that we also have strict
inequality in (14), and therefore, by using the same kind of arguments as
above, we find that in order for (14) to be true with strict inequality, it is

necessary that ¢, > ¢;. Thereby part b) is also proved. Q.E.D.

Corollary 1. Suppose that the underlying distance-function is defined by
(12). Let {a(i, ), B(z,y)} be a feasible set of dual variables such that each
pizel (1,7) in Ky, and each pizel (r,y) in K, have an admissible arc. Let
(i0,Jo) belong to Ky, let (z1,1), (Z2,2%), (x3,41) be three pizels in K, on
the same line y = y;, such that iy < 1, < zo < z3. Furthermore assume
that (z1,v1) is admissible with respect to (19, jo) and that (x4, y) is low with
respect to (ig, jo). Then (z3,y1) is also low with respect to (i, jo)-

Proof of Corollary 1. Assume that {(Zg, jo), (z3,y1)} is an admissible arc.
Let (is, j2) be an admissible pixel with respect to (z2,y1). Since (x2,11) is
low with respect to (%o, jo), it follows by applying part b) of Proposition
3 to the pixels (ig,jo), (i2,J2), (2, %) and (z3,¥1), that i < 7. On the
other hand, by applying part a) of Proposition 3 to the pixels (%9, jo), (i2, J2),
(z2,31) and (z1, y1), we conclude that iy < ¢ and thereby we have reached a
contradiction. Q.E.D.

Remark 1. The corollary implies that in case the pixel (z¢,y;) € K3 is

the first pixel in K, along the line y = y; for which z5 > 4y and (2o, 1)
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is an admissible pixel with respect to (ig, jo), then we can stop the search
for admissible pixels on this line as soon as we find a pixel which is low. If
instead it turns out that the first pixel (zo, ;) € K2, with 2o > i, along the
line y = yi, is not an admissible pixel with respect (4o, jo), then we should
use Theorem 2 until we find an admissible pixel, after which we can use the
corollary. Clearly the use of the corollary only makes a minor improvement
of the algorithm.

Remark 2. Just as is the case with Theorem 2 the corollary is only useful

for images defined on a grid structure.

Proof of Theorem 2. We are now ready to prove Theorem 2. Assume that
(x3,11) is admissible with respect to (io, jo). Let (i,71) be an admissible
arc with respect to (z1, 1) and let (2, j2) be an admissible arc with respect
to (zz,141). From a) of Proposition 3 it follows that i, < i3, from b) of
Proposition 3 we obtain iy < #o, and from the hypothesis of the theorem we

also know that 7 < 7 < 1y < z3. Thus
11 <12 <15 <1 <9 < T3. (15)

From the hypothesis of the theorem we also have that:

alig, jo) + B(z1, 1) = 6(do, Jo. T1,%1) — 11 (16)
a(ig, jo) + B(x2, 1) = 6(%0, Jo, T2, Y1) — T2 (17)

where
T 2 T > 0 (18)

By subtracting (17) from (16) and using the definition of §(7, j, z, y) we obtain

B(x1, n) — B(z. y)=r2—711+ 2(zy — x1)20 + 33? - 33; : (19)
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and by subtracting the equality a(is, j2) + (22, y1) = 6(i2, J2, T2, ¥1) from
the inequality a(is, j2) + B(z1,¥1) < 8(i2, j2, 21, ¥1) We obtain

B(zr, 1) — B(z2, 1) < 2o — 21)ip + 27 — 73 . (20)
Finally, by using (19) to replace the left hand side of (20), we obtain
To — 71 + 2(x2 — 1)1 < 2(z2 — 71)is
which implies that
Ty — 12 > 2(x2 — x1)(tg — i2) > 0
where the last inequality follows from (15) and hence
Ty > Ty

which violates (18), and thereby we have reached a contradiction. Q.E.D.

7. ASTOPPING CRITERION ALONG THE VERTICAL AXIS.
Lemma 2 and Corollary 1 imply, roughly speaking, that the search time for
finding new admissible arcs is decreased from the order O(N?) to the order
O(N'®), in case our images are square digital images, where N as before de-
notes the total number of pixels in the two images. (Lemma 2 and Corollary
1 give rise to stopping criteria along the horizontal lines.) We shall now show,
how we can reduce the search time to roughly O(N), by giving a stopping

criterion along the vertical lines also.
Theorem 3 Suppose that the underlying distance-function is defined by

5(i’j717y) = (Z - x)? + (] - y)2
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Let {a(i,7),8(z,y)} be a feasible set of dual variables such that each pizel
(i,7) in K;, and each pizel (z,y) in K, have an admissible arc. Let (i, jo)
belong to K,. Let (z,,y1) be a pizel in K5, NE of (io,jo), which is not an
admissible pizel with respect to (io, jo). Let instead (i1, 71) be an admissible
pizel with respect to (z1,y1), and assume that also (i1, j1) is NE of (i, Jo)-
Then if (xa,v2) is a pizel in Ko, NE of (z1,%1), then (z2,y2) is lower than
(21, 91)-

(For a graphical illustration, see Figure 4 below.)

Figure 4
low domain
(ila.jl)
admissible arc
) zl,yl)
low

unadmissible arc

(0, Jo)

Proof. Let us assume that (z2,y2) is NE of (z;,3) and that it is not

lower than (z1,y;). Then the following relations hold:
a(i07 ]0) + B(xlv yl) + T = 6(i07j07 Ty, yl)

a(iy, j1) + B(xa, y2) < (i1, 1, T2, y2)
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a(io, jo) + B(x2, y2) + r2 = 6(%0, Jo, T2, Y2)
a(iy, j1) + B(z1, 41) = (41, j1. 21, 1)

and

0<r, <ry.
By first adding the first equality and the inequality, and then subtracting the
next two equalities, we obtain
Ty — T2 S 5(2'07].01 I, yl) + 5(i17 jl’ Tg, y2) - 5(i07j0a T2, .7;12) - 5(i17j17 I, yl)u
and shifting terms we find that
5(2'07]'0%1,1/1) — 6(do, Jo. T2, 42) = 6(i1, J1, 71, 1) — 6(41, 1, T2, y2) + 11 — T
(21)
By using the definition of the distance-function (7, , z,y) we find that the
left hand side of (21) becomes equal to
(z1 —d0)* — (22— 10)* + (1 — Jo)* = (32 — 70)* =
2} — 23 — 2(z1 — T2)io + U5 — 3 — 2(y1 — w2,
and that the right hand side of (21) becomes equal to
(z; — 2'1)2 —(z2 — Z'1)2 + (31 — ]'1)2 —(y2— j1)2 +r—r2=
2t —z3 -2z -z + U — s — 2(y — W) + 11— T2
By subtracting the right hand side of (21) from the left hand side, we thus
obtain the inequality
2(zy — 22)i1 + 2(y1 — ¥2)i1 ~ 2(x1 — T2)io — 2(11 — Y2)Jo + T2 — 711 20,

and by shifting terms we obtain the inequality

2(z1 — z2)(i1 —do) + 2(h — ¥2) (U1 — Jo) 2 11 — T2
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But since z; < Ta, 4 > i, 41 < y2 and j; > Jo, and since 7 > 79 by
assumption, this last inequality can not be true and we have reached a con-
tradiction. QED.

Remark. This theorem gives rise to a very efficient stopping criterion since,
very often, we can choose the pixel (41, j1) equal to (io, y1) which implies that

we can stop the search for new admissible pixels on or above the line y = y;.

8. HYPERBOLIC SETS, LEVEL SETS AND EXCLUSION SETS.
Before we start to discuss how we can shorten the search time for new admissi-
ble arcs in case the underlying distance-function is the Fuclidean distance, we
shall introduce some further notions. As usual, let P = {p(i,j) : (¢, ) € K1}
and Q = {q(z,y) : (z,y) € K2} be two images, let §(z, j, 7, y) be an arbitrary
distance-function, and let {a(i,5) : (,j) € K1} and {B(z,y) : (z,y) € Ka}
be two sets of feasible dual variables associated to the images P and @ re-
spectively.

For each (i,j) € K; we define the ezclusion set E[(i, j), K»| simply as all
pixels in K, which are not admissible with respect to (i, j) and similarly for
each (z,y) € K, we define the exclusion set E(z,y), K] simply as all pixels
in K, which are not admissible with respect to (z,y).

Next let us also introduce a notion which we call a level set as follows.
Let (ig,jo) € K, and let r be a number such that r > 0. The set of all pixels
(z,y) in Ko such that

6(:i07j0a$v y) - a(i07j0) - B(‘T7 y) >r
will be called a level set and denoted by L[(4o, jo), K2, 7]. Note that
L[(l’])* Ko, 0] = E[(Z,_]), KQ}
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We shall now proceed by introducing a notion which we shall call a hy-
perbolic set. Let (z1,y1) and (z3, y2) be two points in R? and let 7 be a real

number. We define the hyperbolic set H[(z1,v1), (22, y2),7] by

H[(‘Tlayl)v (1‘2, y’-’)’r] = {('rvy) € R2 : 5($,y,x2, y2) - 5(17.%117 yl) < 7'}-

For a graphical illustration, see Figure 5 below.

H[(‘Tlu y2)’ (x%j?)’ T}
r<0

Figure 5.

(z1,91)

Remark. The reason we call the set an hyperbolic set is because if we replace
the inequality sign in the definition by an equality sign, thereby changing the
defining inequality to an equality, this equality would define an ordinary hy-
perbola in case the underlying distance-function is the ordinary Euclidean

distance.

We shall next present a theorem which connects hyperbolic sets and level

sets.
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Theorem 4 Let P = {p(i,7) : (i,j) € K1} and Q = {qg(z,y) : (z,y) €
K,} be two images, let 6(i, 7, z,y) be an arbitrary distance-function, and let
{a(i,j): (i,7) € K1} and {B(z,y) : (z.y) € K>} be two sets of feasible dual
variables associated to the images P and Q respectively, such that each pizel
(i,7) in K, and each pizel (z,y) in K, have an admissible arc.

Let (ig, jo) be a pizel in K, let (z1,31) be a pizel in Ky which s not an
admissible pizel with respect to (ig, jo) , let the number 1 be defined by

r = 6(i0,j0,$1, yl) - a(iﬂajﬂ) - B(Ilv 3/1)7

let (iy.71) be an admissible pizel with respect to the pizel (z1,71), let A be
defined by A = 6(io, jo. 1, y1) — 0(i1, j1, 21, %1), and let s be a real number
satisfying s > 0. Then,

(a):
H[(i()ajo)? (ilvjl)ur - A - S] N K? - L[(i07j0)7 K275]7
(b):
H[(iO*,jO)v (iltjl)’, r— A] M K2 C E[(i07j0)7 K?L
and (c):
if also (-, -,-,-) is a metric, then

H(io, jo), (z1, 1), T — 8(i0, Jo, &1, 1) — 8] C H{(é0, Jo), (21, 1), 7 — A = 5.

Proof. Let us first prove (c). We prove (c) by contradiction. Thus assume
that (z,y) does belong to H{(io, jo), (z1,41),7 — (%0, jo, T1, Y1) — s] but does
not belong to H|[(ig, jo), (i1, 1), 7 — A — s]. Then

§(x,y,z1, 1) — 8(2, Y, %0, Jo) < 7 — 0(in, Jo, T1,3n) — $
and also

5(z,y,i1,51) — 6(x,y,i0, Jo) = 1 — 6(d0, Jo, T1, Y1) + 0(21, 71, 71, 11) — $-
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Hence
r—s— 5(i0,j0,$1,y1) + 5(i1,j1,171a y1) < 5(1'7 Y, iujl) - 5(17% io:jo) =

6(1‘,y,i1,j1) - 6(1‘7 y’xlsyl) + 6(:1:7 Y, I, yl) - 6(1‘" Yy, io,jo) <
r— é(iOaj01 Iy, yl) -5+ 6(1" Y, ilajl) - 5(17,9,1'1, yl)

from which follows after cancellations that

6(ilajluz17y1) < 5(1‘,y,i1,j1) - 5(1'7%331,%)-

Since we have assumed that (-, -, -, -} is a metric, this last inequality can not
be true because of the triangle inequality.
In order to prove (a) let (z,y) denote a pixel in K, and define

T2 = 5(1'0,]-0,1:, y) - a(iOVjO) - ﬁ(x1 y)

Now suppose that the pixel (, y) does not belong to the level set L[ig, jo, K2, 5].
This implies that the number r; introduced above, must satisfy 0 < r, < s.

We therefore have the following relations:

a(to, jo) + B(x,y) + r2 = (o, Jo, T, y),

aliy, 1) + Bz, 11) = 6(i1, 41, 21, v1)s
a(io, jo) + B(z1,y1) + 1 = 8(to, Jo, Z1, 11),

and
a(ilajl) + 5(-1',:1/) S J(ilvjla'I, y)

By first adding the first two equations, then subtracting the next equation,

and finally also subtracting the last inequality, we obtain

To —T 2 5(i0,j071',y) + 6(7:1',].111"1’&/1) - 6(2.07.]'0)1"173/1) - 5(i17j1a$7y)‘
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Thereafter shifting terms we obtain

5(‘1'17]'1, r, y) - 5(1'0:]'0, r, y) > 5(i1,j1~$17y1) - 5(i07j0,1717 yl) +7r =7y

and using the fact that s > r, it follows that
5(il)jls‘rv y)—é(i07j011"7 y) 2 6(i17j17 I, yl)—é(i()aj()amlv y1)+7"—3 = T'-A_S

from which it follows that

(z,y) & H{(do, Jo), (i1, 1), 7 — A — 5]

which proves (a).
Finally (b) follows from (a) by taking s = 0. Q.E.D.

Remark. Part (b) of Theorem 4 can perhaps be considered as the main
result of the paper. From this result we note that the larger the value
r = 8(ip, Jo. x1, 1) — alio, Jo) — B(z1, ) is, and the smaller the difference
A = 8(ig, jo. T1,11) — 8(41, J1. T2, ¥1) is, the larger part of the plane will be
part of the exclusion set. The reason, that we have included part (c) of the
theorem, is that there are occasions, when it can be simpler to check the size
of the hyperbolic set H|(io, jo), (z1,¥1),7 — (%0, Jo. 1, %1) — s} than it is to
check the size of the hyperbolic set H{(io. jo). (i1, 1), 7 — & — s|.

9. AN AUXILIARY LEMMA.

In this section we shall prove an elementary lemma which relates cones and
hyperbolas in the plane. We shall rely on this lemma when formulating and
proving the results in the next section.

Let 6(-, -, -, ) denote the Euclidean metric.
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Lemma 1 Let a and b be real numbers such that a > 0 and b < 2a, and

consider the following set:
HYP = {(z,y) € R*: §(z,y,—a,0) — §(z,y, a,0) > b}.
Define Hy and H| by
Hy = {(z,y) € R* : z > 0},

H) = {(z.y) € R* : z > 0},

and for ¢ > 0 define CONE][xy, yo, c| by
CONE(zo,y0,c] = {(z,9) € R* : 2 > 7, {(y — y0)/(z — 20)| < c} U (0, 0)-

Then

(a): if b <0 then Hy C HY P,

(b): if b=0 then H) = HY P,

(c): f 0 < b < 2a and c < \/(4a? — b2)/b? then CONE[z,y,c] C HYP if
(z,y) € HY P.

Proof. Suppose that (z,y) € Hy. Then 6(z,y, —a,0) — 4(z,y,a,0) > 0, and
hence if b < 0, (z,y) € HY P. This proves (a).

Suppose that (z,y) € Hj. Then é(z,y, —a,0) — d(z,y,a,0) > 0 and
conversely if 6(z,y, —a,0) — 6(z,y,a,0) > 0 then £ > 0. Hence if b = 0,
Hj = HY P. This proves (b).

The proof of (¢) is more complicated. Let b > 0. Consider the equation
6(z,y,—a,0) — é(z,y,a,0) = b.

Taking the square of each side we obtain the equality

(t—a) +¢* + (z+a)* + 12— 2y/((z — a)2 + p?)((z + a)? + 1*) = V.
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Moving the term &% to the left hand side and moving the square root to the

right hand side and making some simplificiations we obtain the equation:

9227 + 2y + 2> — b = 2y/((z — @) + yA)((z + a)2 + 3?).
Then again taking the square of both sides we obtain
4z* + 4y® + (207 — b*)? + 8% + 8z%a® — 4270 + 8yPa® — 4yPH =
4((z - @)’ +9°)((z + a)* + 3%,
and the right hand side of this equality can be simplified to
4z* + 4a* — 822 + 4y* + 82%y% + 8yPa’.
Eliminating common terms we obtain the equation
4a® + b* — 40?0 + 82%a® — 422 — 4%V = 4a” - 827,

and then, making further elimination and moving the terms containing z-
factors and y-factors to the left hand side and the other terms to the right

hand side, we obtain the equation:
16220 — 422b% — 4% = —b* + 4a*V°.

Finally, changing signs and dividing all terms by 4b, this equation can be

written in a more familiar form as
y? = (a® — b°/4)((4a® /%) — 1).

This last equation determines a double sided hyperbola, and from the

equation we also conclude that the lines

NN rresry
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and

y = —y/(4a? — b?)/b%z

are the asymptotic lines of the hyperbola. Since ¢ < ,/(4a2 — b2)/b?, it is clear
from well-known properties of the hyperbola, that the cone CONE|z, y, ] is

a subset of HY P as soon as (z,y) € HY P. QED.

10. STOPPING CRITERIA FOR THE EUCLIDEAN DISTANCE.
We shall now consider the problem of how to find new admissible arcs when

the underlying distance-function §(7, j, z, y) is the Euclidean distance, i.e.

5(i,d,2,y) = /(i — 2)? + (- v)*. (22)
We shall first introduce some further terminology and notations. We define
NEfi,j) = {(&,y) € B i3 2 i,y > j}

and

LE[i, j] = {(z,y) € R*:y = j, & > i}.

(We have used the letters NE and LE as abbreviations of northeast and
"line east”).

Now let (g, jo) be a pixel in K;. What we are interested in, is to find all
pixels in K, which are admissible with respect to (g, jo). The purpose of
this section is to present and prove some results by which one can reduce the
search time for finding the admissible arcs with respect to (ig, 7o), which also
are NE of (ig, jo). By symmetry it is then easy to reformulate the results so
that they can be applied, when looking for pixels located NW, SE or SW

of (49, jo) which are admissible with respect to (ig. jo).
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In case we have digital images defined on a grid structure, the general
algorithmic procedure is essentially as follows. First check all pixels on the
line LEiy, jo], then on the line LE[io, jo + 1], then on the line LElig, jo + 2],
etcetera.

In order to reduce the search time there are (at least) two ways one can
accomplish this. Firstly, for each line LE[i, jo+k],k = 0,1,2, .., one can find
a stopping criterion which implies that one need not to check pixels further
away from (ig, jo) on that line. Secondly, one can find a stopping criterion
which implies that one does not have to check any of the lines LET4q, jo + k]
above a certain value of k.

In this section we shall present two theorems. The first gives stopping
criteria along the lines LE[iq, jo+k|, k > 0. The second gives stopping criteria
along the line {(z,y) : ¢ = i,y > jo}. We formulate the theorems in such a

way that they also can be used when looking for a quantity of the form

min{4(, j, z,y) — a(i,j) — B(z,y) : (i,5) € A, (z,y) € B}

where A C K; and B C Ko.
However before we state and prove our theorems we shall state and prove

a simple stopping criterion for pixels on the line LE[ig, jo).

Proposition 4 Suppose that the underlying distance-function is defined by
(22). Let {a(i,j), B(z,y)} be a feasible set of dual variables such that each
pizel (i,j) in K,, and each pizel (x,y) in K, have an admissible arc. Let
(i0, jo) belong to Ky and (z1,y1) belong to K. Suppose further that (z1,91)
is such that ; > iy and y, = jo, and that (z,,y1) is not an admissible pizel
with respect to (ig,jo). Then LE[zi,y1]| N Ky C E[(%. jo), K2]. (Recall that
E[(i,5), K] denotes the exclusion set with respect to (i, j))-
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Proof. Our proof follows the same line as our previous proofs. Assume that
(z,y) € LE[zy, y1]N K, and assume also that (z, y) is admissible with respect
to (i, jo).- We then have the following two relations:

6(%0, Jo, T, y) = aliy, jo) + B(z, y)
and
d(i0, Jo, 1, Y1) > a(io, Jo) + B(z1, 41).
By subtracting the inequality from the equality we obtain

5(i0,j0,17y) - 5(i0,j0,$1,y1) < ﬁ(fl%y) - 5(171: y1)~

Since y = ¥, = jp and = > x; it follows that
5(i0,j0,$a ?J) - 5(10,j0,$1= yl) =r—In

and consequently it follows that

T -1 < B(z,y) - B(z1,9). (23)

But since 4(-,-,-,-) is a metric and since we have assumed that all pixels
have admissible arcs, it follows from Proposition 2 that 8(z,y) — B3(z1,v) <

4(z,y,z1,y) and since é(-, -, -, ) is the Euclidean metric it follows that
0(z,y,21,y) =1 — 1.

Hence 8(z,y) — B(z1,y) < x — z1 which combined with (23) implies that
T — 7 < T — 71, by which we have reached a contradiction. QED.

This simple proposition gives rise to a stopping criterion when searching
for admissible arcs on the line y = j;. Our next aim is to present a result
which will be useful as a stopping criterion when searching for admissible

pixels in the sets LE[ig, jo + k], k= 1,2, ... .
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Theorem 5 Suppose that the underlying distance-function is defined by

8(i, 4, 2,y) = /(i — 2)% + (j — y)?- (24)

Let {a(i,7),8(x,y)} be a feasible set of dual variables such that each pizel
(i,7) in Ky, and each pizel (z,y) in Ky, belong to an admissible arc. Let
(20, Jo) belong to K. Let (x1,y1) be a pizel in Ky, NE of (ig, jo), and different
from (ig, jo), which is not an admissible pizel with respect to (ig, jo). Let
instead (11, 1) be an admissible pizel with respect to (z1,v1), and assume

also that (i1, j1) i1s NE of (i, jo) and that

i > o,

Let r be defined by
r = 6(t0, Jo, 21, 31) — a(io, jo) — B(z1. 1), (25)

let a be defined by
a = (i, Jo, 11, 71)/2, (26)

let s be a real number such that
0<s<r,

let b be defined by

b= 6(io, jo, z1, 1) — 6(ix, 1, 71, 41) — 7 + s, (27)

and let us also assume that b > 0. (The case when b < 0 will be considered

in the next theorem.)

Then, if
V(4a? = 82)/82 > (j1 — jo) /(i1 — ig),

then
LE[z,, 51| N K> C L{(io, jo), K2, 5]
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Proof. Let us consider the hyperbolic set H|(iq, jo), (31, 51),7 — A — 8]
where 7 is defined by (25) and where A is defined by A = (o, Jo, T1, Y1) —
6(i1,j1,T1,y1)- Let the set H be defined by

H= {(I,y) € RZ : 6(1‘,y,i0,jo) - 6(z7yvi1~j1) > b} (28)

where 8(-,-,-,-) is defined by (24) and the number b satisfies (27). From the

definition of H{(4o, jo), (i1, j1), 7 — A — 5] it is clear that we have
H = H|(io, jo), (i1, 1), 7 — & — s].

Let us also observe that since 0 < s < r it follows that
8(z1, 31,40, Jo) = 021, 41,01, 1) >

6($17 yl7i07j0) - 6(I1: ylvilajl) —r+s= ba

and therefore (z;,y;) belongs to H.

Since we have assumed that b > 0 and that i; > iy, the boundary 6 H of
H will be a hyperbola, and the vertex of §H will be along the line between
the two points (iq, jo) and (41, 1), and closer to (i1,71) than to (4, jo). The
axis will be in the N E-direction from the vertex, since (4, j1) is assumed to
be NE of (ig, jo)-

In order to guarantee that the set LE[z1, ;] belongs to H it is sufficient
that the cone Cy defined by

Co={(z,y) € R?:z >z, |(y— w)/(x — 21)| < (h — Jo)/ (i — %0)}

is contained in H. This happens if the angle between the axis of the hyperbola
§H and the asymptotes of 6 H is such that the tangent of the angle is larger
than or equal to (j; — jo)/(i1 — i0). We call this angle 6.
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Now by using the estimates obtained in Lemma 1 we conclude that if the

numbers a and b as defined by (26) and (27) satisfy
(402 — b2)/b? > (jr — Jo)/ (i1 — do), (29)

then the angle # between the axis and the asymptotics is so large that any

cone

{(z.y) e R* x> 2" [(y—¥)/(x =2 < (h — 50)/ (0 — @)}

is a subset of H if (z',y') belongs to H. Since we have already proved above,
that (z;,11) always belongs to H, it follows that the cone Cj is a subset of
H. Since evidently LE[x;, ] is a subset of Cy it now follows from part (a)
of Theorem 4 that

LE[z,,v:) N K2 C Li(ig, jo), K2, s]-

QED.

Proposition 4 and Theorem 5 are useful for giving stopping criteria along
lines parallel to the line y = jo. Our next theorem gives rise to stopping
criteria along the line z = 15. The basic assumptions of the next theorem are

similar to those of Theorem 5.

Theorem 6 Again, suppose that the underlying distance-function is defined

by

8(i,j,2.y) = Vi~ 2+ (G~ v)?
and let as usual {a(i, ), B(z,y)} be a feasible set of dual variables such that
each pizel (i,j) in K1, and each pizel (z,y) in K, belong to an admissible
arc. Let (ig, jo) belong to K. Let (zy,y1) be a pizel in Ky, NE of (%0, Jo),
and different from (iy, jo), which is not an admissible pizel related to (2o, Jo)-

Let instead (i1, j1) be an admissible pizel related to (z,,y;) and assume that
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also (i1, 51) is NE of (ig, jo) (11 not necessarily larger than iy). Again, let r

be defined by
r = 68(do, Jo, T1, Y1) — alio, Jo) — Bz, 11),
let a be defined by
a = 6(io, jo, 11, 71)/2,
let s be a real number such that 0 < s <r, andletb be defined by

b - 5(i0’j0,$17?!1) - 6(i17j17$1ay1) —7r-+s.

(a): Suppose b < 0 and that j; > jy. Define
y2 = (Jo+51)/2 + (i1 — 40)*/2(j1 — jo)- (30)

Then, if y > ya,
‘NE[lbv y] N K2 - L[(i07j0)7 KZv 3]'

Nezxt suppose that b > 0, that j, > jo and also that i; > i5. Suppose also

J1 = Jo S iy — do- (31)
Then
(b): if
v (4a? = b2) /62 > (iy — i0)/(J1 — Jo)
then

NE[:C], yl] N K2 C L[(iOajO)v KQa 3]'
Next, suppose instead of (31) that j, — 5o > % — 1g.
Then
(c): if

v (4a® — 02) /6% > (j1 — jo)/(ir — o)
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then
NE[I], yl] N K2 C L[(iﬂvjo)a K—Qv 5}»

and

N.E[i()a y] N K2 C L[(lﬂa jO)v K21 S]

if y > y3, where the point y; is defined by

ys = j1 + 2(i1 — i0)2(G1 — do) /(G — Jo)? = (ia ~ i0)?). (32)
Proof. Let us again consider the hyperbolic set H|(iq, jo), (i1,J1),7 — A — 5]
where 7 is defined by (25), and where A is defined by A = 6(%o, jo, 21, 1) —
8(41, j1, 71, ¥1)- For each b define the set H(b) by

H(b) = {(‘rv y) € R2 : 5(1" ?471'0»]'0) - 5(337@/, ihjl) > b}
where §(-, -, -, ) is defined by (24) and the number b satisfies (27). From the
definition of H{(iq, jo), (t1,J1), 7 — A — s] it is clear that we have

H(b) = H|(io, Jo), (i1, j1), 7 — A — s].
From the definition of H(b) it is also clear that
by < by = H(bg) C H(bl)

As we showed in the proof of the previous theorem we also know that (z1, 1)
belongs to H(b).
To prove (a) let us first consider the case when b = 0. The boundary of

H (b) will in this case be a straight line, L say, defined by the equation

y — (Jo+51)/2 = —((ix — 40)/(Jr — Jo))(z — (i0 +71)/2).

If we consider this equation as a function of z it is clear, since 4; > 49 and
j1 > Jjo, that the function is non-increasing, and therefore, since (z1,41) €
H(b), it is clear that

NE[zy, 1] C H(b) (33)
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and also that
NEliq, y) C H(b) (34)

if y > y» where y, is such that (4g,y2) are the cordinates of the point where
the line L cuts the line whose equation is z = i3. To determine the value of
Y2 we just have to insert the value r = ¢y into the equation defining L. We

then find that
y = (Jo+71)/2+ ((i2 — %)%/2(1 — jo)s

and hence y, satisfies (29). That the assertions of (a) hold, now follows from
(33) and (34), and hence (a) is proved in case b = 0. But that the assertions
of (a) are true also in case b < 0 follows immediately from the fact that
by < by = H(bs) C H(by). Hence part (a) of the theorem is proved.

From now on we denote H(b) by H. Next assume that b > 0 and that
i1 > ip. Then the boundary of H, which we denote by §H, will again be a
hyperbola, the vertex of 6 H will be along the line between two points (i, jo)
and (i1, j1) and closer to (i1, 71) than to (ig, jo), and the axis will be in the
N E-direction from the vertex, since (i1, j,) is assumed to be NE of (4, jo).
(Recall that H is defined by (28)).

We now want to find conditions on the numbers a and b as defined by
(26) and (27) such that the hyperbola éH has an eccentricity which is so
large that the set NE[z;,y;] is contained in H. Since we have assumed that
J1 — Jo < 17 — 1, the crucial angle is the angle between the y-axis and the
line between the points (g, jo) and (i1, ;) (that is the line along the axis of
the hyperbola). Since we have assumed that j; > 7y, this angle is less than
7/2 and the tangent of the angle is clearly equal to (i — i9)/(j1 — jo). By

Lemma 1 we conclude that the hyperbola d H will have a sufficiently large
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eccentricity if the numbers a and b will satisfy the equality

v (4a? = b2) /6% > (i1 —10) /(51 — Jo)-

instead of (29). From Theorem 4 it thus follows that
NE[zy,31] N K2 C L[(io, jo), K2, 5]

and thus (b) is proved.

It remains to prove (c). Thus assume that b > 0, that i, > 4o, and that
j1 — jo > i1 — ip. Again we consider the set H defined by (28), and again
we want the eccentricity of the hyperbola §H to be so large that the set
NE[zx;,y:] is a subset of H. This time the crucial angle is the angle between
the z-axis and the line through the two points (i, jo) and (41, j1) (that is the
line along the axis of the hyperbola). Since we have assumed that #; > iy,
this angle is less than m/2, and the tangent of the angle is clearly equal
to (j1 — Jjo)/(i1 — %). Again, by applying Lemma 1, we conclude that the
hyperbola § H will have a sufficiently large eccentricity if the numbers a and
b will satisfy the inequality (29). Hence by Theorem 4 it follows that if (29)
holds then

NE[z, 1) N K2 C L{(io, jo), K2, 8]

and thus the first part of (c) is proved.

Moreover, if a and b satisfy the inequality (29), then the line, which starts
at the point (i, j;) and which makes an angle with the axis of the hyperbola
0H which is the same as the angle between the axis of the hyperbola and
the r-axis, will be contained in H. This line will cut the line z = 73 at some
point y5. From geometric considerations it is then clear that NE [i0,y,] C H

if y > y; and hence by Theorem 4 we also have
JVE{’éo, y] N Kz C L[’io,jo, Kz, S]
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ify > ys.
It remains to show that the number y; is determined by the expression

(32). The equation for the line we are considering can be written
y—n=klz—14q),

where the number £ still has to be determined. If we denote by 6 the angle
between the line through the two points (ig, jo) and (71, ;) (that is the line
along the axis of the hyperbola § H) and the line y = 44 , then

k = tan(26) = 2tan(8)/(1 — tan*(6)).

Now since tan(6) = (j1 — jo)/(i1 — %), by inserting & = iy into the equation

for the line , we find that
y = j1+ 201 — Jo)(lo — 11)/(1 = (41 — Jo)/ (i1 — 10))?,

which after simplification is equal to the expression in (32 ).

Thereby also the second part of (c) is proved and thereby the proof is
completed. Q.E.D.
Remark. By using the theorems of this section, it seems likely, that the
search time for finding all pixels which are admissible with respect to a given
pixel in most situations will have a computational complexity of order O(1),
and therefore the computational complexity for finding all admissible arcs
will be of order O(N) roughly, where though the constant in O(N) may be
fairly large.
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11. EACH PIXEL BELONGS TO AN ADMISSIBLE ARC.
One of the basic assumptions we have made in most of the results proven
above is that the set of dual feasible variables {a(3, j), B(x,y)} is such that
each pixel (4, j) € K, and each pixel (z,y) € K, belong to an admissible arc.
That is, to each (i, j) € K, there exists a pixel (z,y) € K, such that

a(i, j) + B(z,y) = 8(i, j. =, 9), (35)

and to each (z,y) € K, there exists a pixel (¢, j) € K, such that (35) holds.
We shall now show that this is a valid assumption independently of the choice
of the underlying distance-function.

Let us first state the following proposition.

Proposition 5 Define the set of dual variables {a(i,j),3(x,y)} as follows:
a(i,j) = min{d(s, j,z,y) : (z,y) € Ka} (36)

ﬁ(xvy) = mln{é(z,],z, y) - CY(Z,_]) : (7”]) € Kl} (37)
Then the set of dual variables is feasible, and, moreover, to each pizel (i, j) €

K, and to each pizel (z,y) € Ko there ezists an admissible arc.

Proof. The proposition is intuitively obvious. A formal proof can read as
follows. From equation (37) it is clear that to each (z,y) € K, there exists
a pixel (i,j) € K, such that (35) holds. Moreover, from (37) it also follows
that the set of dual variables is a feasible set. Now suppose that there exists

a pixel (7,7) € K; such that
a(i,j) + B8(z,y) < 8(i, j, z,y)

for all (z,y) € K. Since a(i,j) = 6(4, j, r,y) for some (r,y) € Ko, it follows
that for this choice of pixel, 3(z, y) must be negative. But this is not possible
because of (37) and the fact that 6(7, j, z,y) > a(i, j) because of (36). Q.E.D.

We shall now prove:
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Lemma 2 Let the set {a(,j),8(z,y)} be a set of feasible dual variables
obtained by the primal-dual algorithm when initially the set of dual variables
are defined as in Proposition 5. Then each pizel (i,j) € K, and each pizel

(z,y) € K, will have an admissible arc.

Remark. In case one is familiar with the primal-dual algorithm, the truth
of the lemma is intuitively clear. We include a formal proof for the sake of
completeness.
Proof. To give a formal proof of the lemma we need to describe the primal-
dual algorithm partly again. As pointed out in Section 4, one step in the
primal-dual algorithm is called the labeling procedure, and below we shall
describe it in more detail. Let us first introduce two further notions. Thus
let h(i,j,z,y) be a transition plan from the image P = {p(i,j) : (i,j) €
K;} to the image Q = {q(z,y) : (z,y) € K>}. (See Section 2 for the
definition of a transportation plan.) We call a pixel (¢,7) € K, deficient if
the transportation plan h(z, j, z,y) is such that

> h(g,2.y) <p(3, 7). (38)

(z.¥)EK?

If instead (7, j) € K is such that the left hand side of (38) is equal to the
right hand side of (38) then we say that (¢, j) is full.

We denote the subset of K, consisting of all deficient pixels by D, and
the subset consisting of all full pixels by Fj.

The labeling procedure is as follows. One starts the labeling procedure
by labeling all deficient elements in K; (that is the set D;). Then, whenever
a pixel (7, 7) € K, is labeled, then all pixels (z,y) € K, which are admissible
with respect to (7,7) and are not yet labeled, are labeled, and whenever a
pixel (z,y) € K> is labeled, then all pixels (7,j) € K, which are admissible

with respect to (z, y), which are not yet labeled and for which h(i, 7, z,y) > 0,
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are labeled.

At the end of a labeling procedure, depending on the labeling, one can
either go to the so called flow change routine or to the so called dual solution
change routine. If one goes to the flow change routine the transportation
plan is redefined after which one can redo the labeling. Sooner or later one
has reached a state when it is not possible to find a better transportation
plan for the given set of admissible arcs induced by the present set of dual
variables. One therefore has to redefine the dual variables.

When the labeling procedure ends, a number of pixels in both K; and K>
are labeled. Let L, denote the set of labeled pixels in Ky, let U; denote the
set of unlabeled pixels in K,, let L, denote the set of labeled pixels in Kb,
and let U, denote the set of unlabeled pixels in K.

When the dual variables are changed, one uses the following quantity:
0 = max{§(z,y.1,j) — a(i,j) — Br,y) : (1,7) € L1, (z,y) € Ua} (39)

which one can prove will be > 0 (unless the transportation plan is complete).

The way the dual variables are changed is as follows:
Opew (i, J) = aoia(t, j) +©, (1,7) € Ly
Cnew (1, J) = Qoa(i, §), (4,7) € Us
Bnew(®,y) = Bota(x, y) — O, (z,y) € Ly

Bnew(xay) = ﬁold(xuy)v (Qf,y) S U2-

From the way the new set of dual variables are defined the following conclu-

sion follows immediately.

Proposition 6 After we have updated the dual variables the only way by
which an arc {(i,7),(z,y)} can be unadmissible when it previously was ad-

massible is if (1,j) € Uy and (z,y) € L.
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Now let us thus prove that the new set of dual variables gives rise to a set of
admissible arcs such that to each pixel in K; and to each pixel in K, there
exists an admissible arc.

Our induction assumption is that the old set of dual variables has this
property. Note that initially this is true because of Proposition 5. Now let
us first prove that to each pixel (7, j) € K, there exists a pixel in K, which is
an admissible arc. From the induction hypothesis and Proposition 6 above,
the only case we have to consider is the case when (¢,7) is unlabeled. But
if (4,7) is unlabeled it must be full. Next let G(i,7) be the set of pixels
(z,y) € K, for which {(7, j), (z,y)} is an admissible arc under the old set of
dual variables. If there exists an element (z,y) € G(i,j) which is not labeled
then we have found an arc which will also be admissible under the new set
of dual variables. Otherwise all pixels in G(¢, j) must be labeled. Since the
pixel (i, 7) is full it follows that there must exist a pixel (z,y) € G(3, j) for
which h(i,j,z,y) > 0. But then because of the way the labeling procedure
works the pixel (¢, j) would have been labeled. Hence if there exists a pixel
(z,7) € K, which is not labeled there must exist a pixel (z,y) € G(4, j) which
is not labeled and consequently this arc will be admissible also after the dual
variables are updated.

We have now proved that to every pixel (i,7) € K, there exists a pixel
(z,y) € K3 such that the arc {(4,j), (z,y)} is admissible under the new set
of dual variables. It remains to prove that each pixel (z,y) € K, has an
admissible arc under the new set of dual variables. But this is somewhat
easier. By Proposition 6, a necessary condition for an arc {(z, ), (z,y)} to
be unadmissible when it previously was admissible is that (z,y) is labeled.
But from the labeling procedure, it then must exist an admissible pixel (¢, 7)

with respect to (z,y) which also is labeled, and then because of Proposition
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6 the arc {(i,7), (z,y)} will be admissible also under the new set of dual
variables. Thereby the induction step is verified and the proof is completed.

QED

12. REDUCING THE COMPUTATION TIME FOR DETER-
MINING THE QUANTITY BY WHICH THE DUAL VARIABLES
ARE CHANGED.

An important step in the primal-dual algorithm for the transportation prob-
lem is to determine the quantity © as defined by (39). In general the com-
putational complexity for this part of the algorithm is O(N?), where though
O(N?), so to speak, has a small constant.

In case one has integer storages and demands and integer-valued cost-
function then one can always take © equal to 1 and this brings the compu-
tation time down to zero. This strategy works also quite well in case we are
working with digital images.

In case we are dealing with the transportation problem in the plane and
have the Euclidean distance as cost-function and the positions of the sources
and sinks are essentially random, then it is necessary to compute the quantity
© defined by (39). In this section we shall formulate a result by which one
can reduce the computation time to determine the quantity ©.

We first prepare for our result. Let as always K; = {(i(n),j(n) : n =
1,2,..,N} and K, = {(z(m),y(m) : m = 1,2,..., M} be two sets in R?, let
P = {p(i,j): (i,j) € K1} and @ = {a(x.¥) : (z.y) € K2} be two images
such that >k, p(i,j) = Lk, ¢(x,y). Let the underlying distance-function be
defined by

83, joe,y) = (i — )2+ (j — )2 (40)
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Let {a(i, j),B(z,y)} be a feasible set of dual variables such that each pixel
(,7) in K, afnd each pixel (z,y) in K, belong to an admissible arc. Let
L C K, and U C K, be such that

© = min{d(s, j,z,y) — a4, j) — Bz, y) : (4,5) € L,(z,y) € U} > 0. (41)
Our aim is now to determine © and we do this in principal by computing
e(i,j) = mln{é(’L:]v z, y) - a(l,]) - ,B(l', y) : (l‘, y) € U}

for each (i,7) € L.
Let the size of L be equal to Ny, let the size of U be M; let {(i(k), j(k)) :
k = 1,2,..., N} be a sequential list of the set L, let {(z(k),y(k)) : k =
1,2,..., M,} be asequentiallistof U. Forn =1,2,...,Ny,and m = 1,2, ..., M,
let
O(n) = min{Ok) k) : 1 < k < n},

let

O,5)(m) = min{d(i, j, z(k), y(k)) — a(i, ) — Ble(k), y(k)), 1 < k < m},

let
©(0,m) = Bq).iy)(m),
set
0(0) = 6(0,1),
and define
O(n, m) = min{O(n), Oi(n+1),j(n+1)) (M)} (42)

Theorem 7 Let L = {(i(k),j(k)) : k=1,2,.., N} C K, and
U= {(z(k),yk)): k=1,2,..., M} C K, be such that ({1) holds. Let n and

m be two integers such that 0 <n < Ny —landl < M;—1andn+m > 1.
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Set (ig,70) = (i(n + 1),j(n + 1)), set (z1,31) = (z(m + 1),y(m + 1)), let
(i1, 71) be an admissible pizel with respect to (z1,y1) and assume that (41, J1)

is NE of (19, jo). Let r be defined by

r = §(4o, Jo, 21, Y1) — @(do, Jo) — B(x1, 31),

let a be defined by
a = (i, Jo, 1, 51)/2,

and let b be defined by
b = 6(i0)j07m1ay1) - 5(i1:j1»$17y1) -7+ @(Tl, m)

where ©(n, m) is defined by (42).

Then.:

(a): Suppose b < 0 and that y1 > (jo + j1)/2. Then NE[z,, ;1) N K2 C
L{(io, jo), K2, ©(n, m}].

(b): Next suppose that b > 0 and suppose also that j, > jo. Suppose also

Ji = Jo < i — do (43)
and
\/(4(12 - b%) /b > (iy — 10)/(J1 — Jo)-
Then

NE[zy, 1] N K2 C L{(d0, jo), K2, O(n,m)].

Suppose instead of (43) that j1 — Jo > 41 — 20 > 0.

Then, if
V(40 — b2} /b2 > (j1 — jo)/ (i1 — 0)

then
]\TE[.”L'l, yl] M Kg C L[(lo, jo), Kg, @(TL, m)]
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Remark. Since the proof is very similar to the proof of Theorem 6, we omit

it.

13. ORGANIZING POINTS ALONG THE NORTHEAST DI-
RECTION.

In order to use Theorems 6 and 7 efficiently, it is necessary to have an ini-
tialization process such that one can find elements NE of a given element
rapidly. Thus, it is necessary that one can organize the elements in the sets
K, and K> and also the set K; UK, in the northeast direction, - as well as the
northwest, the southeast and the southwest directions. In case we are deal-
ing with digital images on a rectangular grid then the pixels are organized
already from the start in such a way that this is no problem. However, in the
general case it is necessary to organize the elements of the two given images
in the NE — SW direction, and the NW — SE direction. In this section
we shall describe one algorithm by which this can be done. We shall only
consider the northeast direction since the other directions can be handled
analogously.

Thus let K = {(z(n),y(n)),n = 1,2,..., N} be a set of points in the
plane. What we want to do is to organize the points in K so that we can
apply Theorems 6 and 7 efliciently. What we will create is a structure which
is often called a directed acyclic graph.

We start by introducing an extra point (z(0),y(0)) such that z(0) <
z(n), n=1,2,...,N and y(0) < y(n), n=1,2,...,N.

Next let us define z(n) = z(n) +y(n), n =1,2,..., N and let us first order

the elements of K in such a way that

z(n)<zn+1),n=1,2,.., N -1
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and

z(n) =z(n+1)=z(n) <z(n+1).

This way to order the elements of K implies of course that (z(n),y(n)) can
not be NE of (z(m),y(m)) if n <m.

To each element (z(n),y(n)), 0 < n < N we shall associate a number
of related elements which will be called parents and children. These notions
are defined as follows: Let (z(n),y(n)) and (z(m), y(m)) be two points in K
with n < m, and suppose that (z(n),y(n)) is SW of (z(m), y(m)). The point
(z(n), y(n)) will be a parent of (z(m), y(m)) if either 1) it is the only element
in K which is SW of (z(m),y(m)), or 2) if there are other points in K which
are SW of (z(m),y(m)) then (z(n),y(n)) is not SW of any such point. If
(z(n),y(n)) is a parent of (z(m),y(m)), then we say that (z(m),y(m)) is a
child of (z(n}, y(n)).

In case we define parents and children as above, then, if we have found
the parents of all points in a set K € R?, then we say that we have organized
the set in the NE — SW direction.

1t is easy to construct examples of sets of size N for which the number of
parents will be N2/4. On the other hand it is clear that one does not need
more than N (N +1)/2 checks to find all parents. Therefore it is clear that the
computational complexity to organize a set in the NE — SW direction is of
order O(N?). However in most situations we believe that one can organize a
set in the NE — SW direction substantially faster by applying the algorithm
we shall now describe.

Let us assume that the points (z(¢),y(:)), ¢ = 0,1,2,...,n have been
organized in the NE — SW direction. We shall now show how to find the

parents of the next point (z(n + 1), y(n + 1)).
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Let m; be defined as the largest index for which
z(my) = max{z(i) : z(i) < z(n+1), y(i) <y(n+1),0<i < n}

and let m, be defined as the largest index for which
y(mz) = max{y(j) : =(j) < z(n+1), y(j) <y(n+1), 0 <i < n}.

We now have two possibilities. Either m; = m, or m; # m,. In the first case

we are ready and (z(m,),y(m;)) is the only parent of (z(n + 1), y(n + 1)).
If instead m; # mo then we have obtained two parents to

(x(n + 1),y(n + 1)) namely (z(m;),y(m1)) and (z(ma), y(ms)), and it is

possible that there are further parents. In order to find these, we shall look

for points (z(k),y(k)) € K satisfying
z(ms) < z(k) < z(my)
and
y(m1) < y(k) < y(ms).
We now define mj as the largest index for which
z(ms) = max{z(i) : x(m2) < z(2) < z(m1), y(m) < y(i) < y(my), 1 <i< n},
if any such index exists, and we define my4 as the largest index for which
y(ma) = max{y(j) : z(m2) < z(j) < z(ma), y(m1) < y(j) < y(m2), 1 < j < n}.

If m3 is not defined, then there is no further parent. In case ms; = m, then
there is exactly one more parent namely (x(m3), y(ms)).

Otherwise we have found two new parents namely (z(mj3),y(m3)) and
(z(m4), y(my4)). In this case there may be further parents namely if there are

elements (z(k), y(k)) € K which satisfy
2(mq) < z(k) < z(ms)
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and
y(ms) < y(k) < y(ma).

To investigate whether there exist any points in this rectangel we proceed in
the same way as above.

We have now briefly described an algorithm by which one can organize
the elements of K, K, and K; U K, in such a way that it is easy to find the
nearest elements in the NE — SW directions.

Remark. As pointed out above it is easy to construct an example of a
set with N pixels which has N2/4 parents and children. Whether this also
requires that we need a storage for the structure of order N? is not 100 %
sure, since in the more extreme situations it is likely that many ”parent sets”
are very similar, and therefore it is conceivable that these sets could be coded
efficiently. In the general random case we believe that the storage needed to
store the information about parents and children will be much less than N?

when N is large.

14. SUMMARY.

In this paper we have proved some results, which give rise to stopping
criteria, when searching for new admissible arcs, when using the primal-
dual algorithm for solving the transportation problem in the plane, in case
the underlying distance-function &(-,-, -, ) is defined either by 6(¢,j, z,y) =
(z—i)2+(y—j)orbyé(i,jz,y)= \/(a: — )2+ (y — j)2. We believe, that

by using Theorems 5 and 6 of Section 10, and Theorem 7 of section 12, it will
be possible to reduce the computational complexity of the Euclidean trans-

portation problem and the Euclidean assignment problem to approximately
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O(N?) from approximately O(N?3), which is the best limit so far, as far as
the author knows. (See e.g. [2] and [14]).

ACKNOWLEDGEMENT. It is a pleasure to thank Erik Ouchterlony for

stimulating discussions and valuable comments.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, NETWORK FLOWS, The-
ory, Algorithms and Applications, (Englewood Cliffs, Prentince Hall,
NJ, 1993).

[2] D.S. Atkinson and P.M. Vaidya, “Using geometry to solve the trans-
portation problem in the plane,” Algoritmica, 13 (1995) 442-461

[3] D.P. Bertsekas, Linear Network Optimization, (MIT Press, Cambridge,
Mass., 1991).

[4] T. Kaijser, "On the computation of the Kantorovich distance for
images”, FOA-R-96-00297-3.5-SE, Defence Research Fstablishment,
Linkdping, Sweden (1996).

[5] T. Kaijser, Computing the Kantorovich distance for images, JMIV, 9,
(1998) 173-191.

[6] L. Kantorovich, “On the transfer of masses,” (in Russian), Dokl. Akad.,
Nauk.,37 (1942) 227-229. Translated in Management Science, 5 (1959)
1-4.

54



[7]

[13]

[14]

H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, 2 (1955) 83-97.

G. Monge, “Mémoire sur la théorie des deblais et des ramblais.”
Histoire de 1’Académie des sciences de Paris, avec les Mémoires de

mathématiques et de physique pour le méme année, (1781) 666-704.

K. Murty, Linear and Combinatorial Programming, (Wiley, New York,
NY, 1976).

S.T. Rachev, “The Monge-Kantorovich mass transference problem and

its stochastic applications,” Theory of Prob. Appl., 29 (1985) 647-676.
S.T. Rachev, Probability metrics, (Wiley, New York, NY, 1990).

M. Werman, S. Peleg and A.Rosenfeld, “A distance metric for multidi-

mensional histograms,” Computer Vision Graphics Image Processing 32

(1985) 328-336.

M. Werman, “A distance measure for comparison of pictures and
shapes,” Ph.D - thesis, The Hebrew University of Jerusalem, Jerusalem,

Israel, (1986).

M. Vaidya, Geometry helps in Matching. SIAM J Comp 18, (1989) 1201~
25.

99






